

Information Technology Department 2nd Year

جامعة برج العرب التكنولوجية

Course: Digital Engineering	Lecturers: Dr. Osama Elnahas, Dr. Dina Abdelhafiz, Dr.			
Semester: 1 st term 2025/2026.	Bassant Tolba, Dr. Radwa Rady			
Assignment 3				

Question 1: Given a 3-bit (A, B, C) input to function F

- 1. Construct the truth table for the function F(A, B, C), where F = 1 if the binary number represented by A, B, C is **an odd number**, and F = 0 otherwise.
- 2. From your truth table, determine all the midterms (where F = 1) and maxterms where (F = 0). Clearly label minterms (m_0 to m_7).
- 3. Simplify the function using a 3-variable Karnaugh Map (K-map) to obtain the minimal Sum of Products (SOP) form, draw the map, and show all groupings in the K-map.
- 4. Write the simplified Boolean expression for F(A, B, C) from K-maps.
- 5. Find the dual of the simplified function.
- 6. Find the complement of the simplified function.
- 7. Draw the logic circuit diagram for the simplified function using basic logic gates (AND, OR, NOT).

Question 2: Given: 3-bit input (F = A B C), F = 1 when the number of 1-bits in (N) is two or more (i.e., 011, 101, 11), F = 0 otherwise.

- 1. Construct the truth table for the function F(A, B, C), where F = 1 if the number of 1-bits represented by A, B, C is **2 or more**, and F = 0 otherwise.
- 2. From your truth table, determine all the midterms (where F = 1) and maxterms where (F = 0).
- 3. Simplify the function using a 3-variable Karnaugh Map (K-map) to obtain the minimal Sum of Products (SOP) form, draw the map, and show all groupings in the K-map.

A/BC	00	01	11	10
0				
1				

- 4. Write the simplified Boolean expression for F(A, B, C) from K-maps.
- 5. Find the dual of the simplified function.
- 6. Find the complement of the simplified function.
- 7. Draw the logic circuit diagram for the simplified function using basic logic gates (AND, OR, NOT).